Error-Covariance Analysis of the Total Least Squares Problem
نویسندگان
چکیده
This paper derives and analyzes the estimate error-covariance associated for both the non-stationary and stationary noise process cases with uncorrelated element-wise components for the total least squares problem. The non-stationary case is derived directly from the associated unconstrained total least squares loss function. The stationary case is derived by using a linear expansion of the total least squares estimate equation, which involves a first order expansion of the associated singular value decomposition matrices. The actual solution for the error-covariance is evaluated at the true variables, which are unknown in practice. Two common approaches to overcome this difficulty are used; the first involves using the measurements directly and the second involves using the estimates which are more accurate than the measurements. This paper shows that using the latter greatly simplifies the error-covariance solution for the stationary case. Simulation results are shown to quantify the theoretical derivations.
منابع مشابه
Covariance shaping least-squares estimation
A new linear estimator is proposed, which we refer to as the covariance shaping least-squares (CSLS) estimator, for estimating a set of unknown deterministic parameters x observed through a known linear transformation H and corrupted by additive noise. The CSLS estimator is a biased estimator directed at improving the performance of the traditional least-squares (LS) estimator by choosing the e...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملRecursive Generalized Total Least Squares with Noise Covariance Estimation
We propose a recursive generalized total least-squares (RGTLS) estimator that is used in parallel with a noise covariance estimator (NCE) to solve the errors-in-variables problem for multi-input-single-output linear systems with unknown noise covariance matrix. Simulation experiments show that the suggested RGTLS with NCE procedure outperforms the common recursive least squares (RLS) and recurs...
متن کاملA Least Squares Approach to Estimating the Average Reservoir Pressure
Least squares method (LSM) is an accurate and rapid method for solving some analytical and numerical problems. This method can be used to estimate the average reservoir pressure in well test analysis. In fact, it may be employed to estimate parameters such as permeability (k) and pore volume (Vp). Regarding this point, buildup, drawdown, late transient test data, modified Muskat method, interfe...
متن کاملWeighted total least squares formulated by standard least squares theory
This contribution presents a simple, attractive, and exible formulation for the weighted total least squares (WTLS) problem. It is simple because it is based on the well-known standard least squares theory; it is attractive because it allows one to directly use the existing body of knowledge of the least squares theory; and it is exible because it can be used to a broad eld of applications in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011